
React (Guide)

Documentation

© 2025 Mushroom Theory Inc. All Rights Reserved.
Available online at makepdfdocs.com

React Documentation (© Meta Platforms, Inc.)
Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0).
To view the full license, visit https://creativecommons.org/licenses/by/4.0/.

Third-Party Asset:
React logo from SimpleIcons (public domain, CC0 1.0):
https://simpleicons.org/icons/react.svg

Mushroom Theory Inc. Proprietary Material:
All layout, formatting enhancements, examples, and commentary by Mushroom Theory Inc. ©
2025 Mushroom Theory Inc.
No portion of these original contributions may be reproduced, adapted, or redistributed without
prior written permission from Mushroom Theory Inc.

Usage License for Purchaser:
Non-transferable, personal-use only. Redistribution, sharing, or any commercial use by end
users is prohibited.
For the latest version and support, visit makepdfdocs.com

Trademarks:
React® is a registered trademark of Meta Platforms, Inc., used solely to identify the original
documentation. No endorsement or affiliation is implied.

Disclaimer:
Provided “as-is,” without warranty of any kind, express or implied.
Neither Meta Platforms, Inc. nor Mushroom Theory Inc. shall be liable for any damages arising
from use of this PDF.

Table of Contents

Quick Start 5

Tutorial: Tic-Tac-Toe 22

Thinking in React 97

Installation 116

Creating a React App 118

Build a React app from Scratch 123

Add React to an ExistingProject 131

Setup 137

Editor Setup 138

Using TypeScript 141

React Developer Tools 156

React Compiler 160

Describing the UI 175

Your First Component 191

Importing and ExportingComponents 198

Writing Markup with JSX 207

JavaScript in JSX with Curly Braces 217

Passing Props to a Component 224

Conditional Rendering 234

Rendering Lists 245

Keeping Components Pure 253

Understanding Your UI as a Tree 264

Adding Interactivity 272

Responding to Events 289

State: A Component's Memory 307

Render and Commit 318

State as a Snapshot 325

Queueing a Series of StateUpdates 337

Updating Objects in State 348

Updating Arrays in State 367

Managing State 381

Reacting to Input with State 397

Choosing the State Structure 410

Sharing State BetweenComponents 425

Preserving and Resetting State 437

Extracting State Logic into a Reducer 456

Passing Data Deeply withContext 469

Table of Contents

Scaling Up with Reducer andContext 487

Escape Hatches 503

Referencing Values with Refs 523

Manipulating the DOM with Refs 532

Synchronizing with Effects 545

You Might Not Need an Effect 567

Lifecycle of Reactive Effects 585

Separating Events from Effects 600

Removing Effect Dependencies 617

Reusing Logic with Custom Hooks 640

LEARN REACT

Quick Start
Welcome to the React documentation! This page will give you an

introduction to 80% of the React concepts that you will use on a
daily basis.

You will learn
How to create and nest components

How to add markup and styles

How to display data

How to render conditions and lists

How to respond to events and update the screen

How to share data between components

Creating and nesting components

React apps are made out of components. A component is a piece of the UI (user

interface) that has its own logic and appearance. A component can be as small

as a button, or as large as an entire page.

React components are JavaScript functions that return markup:

function MyButton() {

 return (

 <button>I'm a button</button>

);

}

https://react.dev/learn

Now that you’ve declared MyButton , you can nest it into another component:

Notice that <MyButton /> starts with a capital letter. That’s how you know it’s a

React component. React component names must always start with a capital

letter, while HTML tags must be lowercase.

Have a look at the result:

export default function MyApp() {

 return (

 <div>

 <h1>Welcome to my app</h1>

 <MyButton />

 </div>

);

}

function MyButton() {

 return (

 <button>

 I'm a button

 </button>

);

}

export default function MyApp() {

 return (

 <div>

 <h1>Welcome to my app</h1>

 <MyButton />

 </div>

);

}

function MyButton() {

 return (

 <button>

 I'm a button

 </button>

);

}

export default function MyApp() {

 return (

 <div>

 <h1>Welcome to my app</h1>

 <MyButton />

 </div>

);

}

App.js

The export default keywords specify the main component in the file. If you’re

not familiar with some piece of JavaScript syntax, MDN and javascript.info have

great references.

Writing markup with JSX

The markup syntax you’ve seen above is called JSX. It is optional, but most

React projects use JSX for its convenience. All of the tools we recommend for

local development support JSX out of the box.

JSX is stricter than HTML. You have to close tags like
 . Your component

also can’t return multiple JSX tags. You have to wrap them into a shared parent,

like a <div>...</div> or an empty <>...</> wrapper:

If you have a lot of HTML to port to JSX, you can use an online converter.

Adding styles

In React, you specify a CSS class with className . It works the same way as the

HTML class attribute:

function AboutPage() {

 return (

 <>

 <h1>About</h1>

 <p>Hello there.
How do you do?</p>

 </>

);

}

https://developer.mozilla.org/en-US/docs/web/javascript/reference/statements/export
https://javascript.info/import-export
https://react.dev/learn/installation
https://react.dev/learn/installation
https://transform.tools/html-to-jsx
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/class

Then you write the CSS rules for it in a separate CSS file:

React does not prescribe how you add CSS files. In the simplest case, you’ll add

a <link> tag to your HTML. If you use a build tool or a framework, consult its

documentation to learn how to add a CSS file to your project.

Displaying data

JSX lets you put markup into JavaScript. Curly braces let you “escape back”

into JavaScript so that you can embed some variable from your code and

display it to the user. For example, this will display user.name :

You can also “escape into JavaScript” from JSX attributes, but you have to use

curly braces instead of quotes. For example, className="avatar" passes the

"avatar" string as the CSS class, but src={user.imageUrl} reads the

JavaScript user.imageUrl variable value, and then passes that value as the

src attribute:

/* In your CSS */

.avatar {

 border-radius: 50%;

}

return (

 <h1>

 {user.name}

 </h1>

);

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/link

You can put more complex expressions inside the JSX curly braces too, for

example, string concatenation:

return (

 <img

 className="avatar"

 src={user.imageUrl}

 />

);

const user = {

 name: 'Hedy Lamarr',

 imageUrl: 'https://i.imgur.com/yXOvdOSs.jpg',

 imageSize: 90,

};

export default function Profile() {

 return (

 <>

 <h1>{user.name}</h1>

 <img

 className="avatar"

 src={user.imageUrl}

 alt={'Photo of ' + user.name}

 style={{

 width: user.imageSize,

 height: user.imageSize

 }}

 />

 </>

);

}

const user = {

 name: 'Hedy Lamarr',

 imageUrl: 'https://i.imgur.com/yXOvdOSs.jpg',

 imageSize: 90,

};

export default function Profile() {

 return (

 <>

 <h1>{user.name}</h1>

 <img

 className="avatar"

 src={user.imageUrl}

 alt={'Photo of ' + user.name}

 style={{

 width: user.imageSize,

 height: user.imageSize

 }}

 />

 </>

);

}

App.js

https://javascript.info/operators#string-concatenation-with-binary

In the above example, style={{}} is not a special syntax, but a regular {}

object inside the style={ } JSX curly braces. You can use the style attribute

when your styles depend on JavaScript variables.

Conditional rendering

In React, there is no special syntax for writing conditions. Instead, you’ll use the

same techniques as you use when writing regular JavaScript code. For example,

you can use an if statement to conditionally include JSX:

If you prefer more compact code, you can use the conditional ? operator. Unlike

if , it works inside JSX:

let content;

if (isLoggedIn) {

 content = <AdminPanel />;

} else {

 content = <LoginForm />;

}

return (

 <div>

 {content}

 </div>

);

<div>

 {isLoggedIn ? (

 <AdminPanel />

) : (

 <LoginForm />

)}

</div>

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/if...else
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator

When you don’t need the else branch, you can also use a shorter logical &&

syntax:

All of these approaches also work for conditionally specifying attributes. If

you’re unfamiliar with some of this JavaScript syntax, you can start by always

using if...else .

Rendering lists

You will rely on JavaScript features like for loop and the array map() function

to render lists of components.

For example, let’s say you have an array of products:

Inside your component, use the map() function to transform an array of

products into an array of items:

<div>

 {isLoggedIn && <AdminPanel />}

</div>

const products = [

 { title: 'Cabbage', id: 1 },

 { title: 'Garlic', id: 2 },

 { title: 'Apple', id: 3 },

];

const listItems = products.map(product =>

 <li key={product.id}>

 {product.title}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Logical_AND#short-circuit_evaluation
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Logical_AND#short-circuit_evaluation
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map

Notice how has a key attribute. For each item in a list, you should pass a

string or a number that uniquely identifies that item among its siblings. Usually,

a key should be coming from your data, such as a database ID. React uses your

keys to know what happened if you later insert, delete, or reorder the items.

);

return (

 {listItems}

);

App.js

Responding to events

You can respond to events by declaring event handler functions inside your

components:

const products = [

 { title: 'Cabbage', isFruit: false, id: 1 },

 { title: 'Garlic', isFruit: false, id: 2 },

 { title: 'Apple', isFruit: true, id: 3 },

];

export default function ShoppingList() {

 const listItems = products.map(product =>

 <li

 key={product.id}

 style={{

 color: product.isFruit ? 'magenta' : 'darkgreen'

 }}

 >

 {product.title}

);

 return (

 {listItems}

);

}

const products = [

 { title: 'Cabbage', isFruit: false, id: 1 },

 { title: 'Garlic', isFruit: false, id: 2 },

 { title: 'Apple', isFruit: true, id: 3 },

];

export default function ShoppingList() {

 const listItems = products.map(product =>

 <li

 key={product.id}

 style={{

 color: product.isFruit ? 'magenta' : 'darkgreen'

 }}

 >

 {product.title}

);

 return (

 {listItems}

);

}

function MyButton() {

 function handleClick() {

 alert('You clicked me!');

 }

 return (

Notice how onClick={handleClick} has no parentheses at the end! Do not call

the event handler function: you only need to pass it down. React will call your

event handler when the user clicks the button.

Updating the screen

Often, you’ll want your component to “remember” some information and

display it. For example, maybe you want to count the number of times a button

is clicked. To do this, add state to your component.

First, import useState from React:

Now you can declare a state variable inside your component:

You’ll get two things from useState : the current state (count), and the

function that lets you update it (setCount). You can give them any names, but

the convention is to write [something, setSomething] .

 <button onClick={handleClick}>

 Click me

 </button>

);

}

import { useState } from 'react';

function MyButton() {

 const [count, setCount] = useState(0);

 // ...

https://react.dev/reference/react/useState

The first time the button is displayed, count will be 0 because you passed 0 to

useState() . When you want to change state, call setCount() and pass the

new value to it. Clicking this button will increment the counter:

React will call your component function again. This time, count will be 1 . Then

it will be 2 . And so on.

If you render the same component multiple times, each will get its own state.

Click each button separately:

function MyButton() {

 const [count, setCount] = useState(0);

 function handleClick() {

 setCount(count + 1);

 }

 return (

 <button onClick={handleClick}>

 Clicked {count} times

 </button>

);

}

import { useState } from 'react';

export default function MyApp() {

 return (

 <div>

 <h1>Counters that update separately</h1>

 <MyButton />

 <MyButton />

 </div>

);

import { useState } from 'react';

export default function MyApp() {

 return (

 <div>

 <h1>Counters that update separately</h1>

 <MyButton />

 <MyButton />

 </div>

);

App.js

Notice how each button “remembers” its own count state and doesn’t affect

other buttons.

Using Hooks

Functions starting with use are called Hooks. useState is a built-in Hook

provided by React. You can find other built-in Hooks in the API reference. You

can also write your own Hooks by combining the existing ones.

Hooks are more restrictive than other functions. You can only call Hooks at the

top of your components (or other Hooks). If you want to use useState in a

condition or a loop, extract a new component and put it there.

Sharing data between components

In the previous example, each MyButton had its own independent count , and

when each button was clicked, only the count for the button clicked changed:

}

function MyButton() {

 const [count, setCount] = useState(0);

 function handleClick() {

 setCount(count + 1);

 }

 return (

 <button onClick={handleClick}>

 Clicked {count} times

 </button>

);

}

}

function MyButton() {

 const [count, setCount] = useState(0);

 function handleClick() {

 setCount(count + 1);

 }

 return (

 <button onClick={handleClick}>

 Clicked {count} times

 </button>

);

}

https://react.dev/reference/react

Initially, each MyButton ’s
count state is 0

The first MyButton updates its
count to 1

However, often you’ll need components to share data and always update

together.

To make both MyButton components display the same count and update

together, you need to move the state from the individual buttons “upwards” to

the closest component containing all of them.

In this example, it is MyApp :

Initially, MyApp ’s count state is
0 and is passed down to both

children

On click, MyApp updates its
count state to 1 and passes it

down to both children

Now when you click either button, the count in MyApp will change, which will

change both of the counts in MyButton . Here’s how you can express this in

code.

First, move the state up from MyButton into MyApp :

Then, pass the state down from MyApp to each MyButton , together with the

shared click handler. You can pass information to MyButton using the JSX curly

braces, just like you previously did with built-in tags like :

export default function MyApp() {

 const [count, setCount] = useState(0);

 function handleClick() {

 setCount(count + 1);

 }

 return (

 <div>

 <h1>Counters that update separately</h1>

 <MyButton />

 <MyButton />

 </div>

);

}

function MyButton() {

 // ... we're moving code from here ...

}

export default function MyApp() {

 const [count, setCount] = useState(0);

The information you pass down like this is called props. Now the MyApp

component contains the count state and the handleClick event handler, and

passes both of them down as props to each of the buttons.

Finally, change MyButton to read the props you have passed from its parent

component:

When you click the button, the onClick handler fires. Each button’s onClick

prop was set to the handleClick function inside MyApp , so the code inside of it

runs. That code calls setCount(count + 1) , incrementing the count state

variable. The new count value is passed as a prop to each button, so they all

 function handleClick() {

 setCount(count + 1);

 }

 return (

 <div>

 <h1>Counters that update together</h1>

 <MyButton count={count} onClick={handleClick} />

 <MyButton count={count} onClick={handleClick} />

 </div>

);

}

function MyButton({ count, onClick }) {

 return (

 <button onClick={onClick}>

 Clicked {count} times

 </button>

);

}

show the new value. This is called “lifting state up”. By moving state up, you’ve

shared it between components.

Next Steps

By now, you know the basics of how to write React code!

import { useState } from 'react';

export default function MyApp() {

 const [count, setCount] = useState(0);

 function handleClick() {

 setCount(count + 1);

 }

 return (

 <div>

 <h1>Counters that update together</h1>

 <MyButton count={count} onClick={handleClick} />

 <MyButton count={count} onClick={handleClick} />

 </div>

);

}

function MyButton({ count, onClick }) {

 return (

 <button onClick={onClick}>

 Clicked {count} times

 </button>

);

}

import { useState } from 'react';

export default function MyApp() {

 const [count, setCount] = useState(0);

 function handleClick() {

 setCount(count + 1);

 }

 return (

 <div>

 <h1>Counters that update together</h1>

 <MyButton count={count} onClick={handleClick} />

 <MyButton count={count} onClick={handleClick} />

 </div>

);

}

function MyButton({ count, onClick }) {

 return (

 <button onClick={onClick}>

 Clicked {count} times

 </button>

);

}

App.js

Check out the Tutorial to put them into practice and build your first mini-app

with React.

https://react.dev/learn/tutorial-tic-tac-toe

LEARN REACT QUICK START

Tutorial: Tic-Tac-Toe
You will build a small tic-tac-toe game during this tutorial. This

tutorial does not assume any existing React knowledge. The
techniques you’ll learn in the tutorial are fundamental to building any

React app, and fully understanding it will give you a deep
understanding of React.

The tutorial is divided into several sections:

Setup for the tutorial will give you a starting point to follow the tutorial.

Overview will teach you the fundamentals of React: components, props, and

state.

Completing the game will teach you the most common techniques in React

development.

Adding time travel will give you a deeper insight into the unique strengths of
React.

What are you building?

In this tutorial, you’ll build an interactive tic-tac-toe game with React.

Note

This tutorial is designed for people who prefer to learn by doing and

want to quickly try making something tangible. If you prefer learning

each concept step by step, start with Describing the UI.

https://react.dev/learn
https://react.dev/learn
https://react.dev/learn/describing-the-ui

You can see what it will look like when you’re finished here:

import { useState } from 'react';

function Square({ value, onSquareClick }) {

 return (

 <button className="square" onClick={onSquareClick}>

 {value}

 </button>

);

}

function Board({ xIsNext, squares, onPlay }) {

 function handleClick(i) {

 if (calculateWinner(squares) || squares[i]) {

 return;

 }

 const nextSquares = squares.slice();

 if (xIsNext) {

 nextSquares[i] = 'X';

 } else {

 nextSquares[i] = 'O';

 }

 onPlay(nextSquares);

 }

 const winner = calculateWinner(squares);

 let status;

 if (winner) {

 status = 'Winner: ' + winner;

 } else {

 status = 'Next player: ' + (xIsNext ? 'X' : 'O');

 }

 return (

 <>

 <div className="status">{status}</div>

import { useState } from 'react';

function Square({ value, onSquareClick }) {

 return (

 <button className="square" onClick={onSquareClick}>

 {value}

 </button>

);

}

function Board({ xIsNext, squares, onPlay }) {

 function handleClick(i) {

 if (calculateWinner(squares) || squares[i]) {

 return;

 }

 const nextSquares = squares.slice();

 if (xIsNext) {

 nextSquares[i] = 'X';

 } else {

 nextSquares[i] = 'O';

 }

 onPlay(nextSquares);

 }

 const winner = calculateWinner(squares);

 let status;

 if (winner) {

 status = 'Winner: ' + winner;

 } else {

 status = 'Next player: ' + (xIsNext ? 'X' : 'O');

 }

 return (

 <>

 <div className="status">{status}</div>

App.js

 <div className="board-row">

 <Square value={squares[0]} onSquareClick={() => handleClick(0)} />

 <Square value={squares[1]} onSquareClick={() => handleClick(1)} />

 <Square value={squares[2]} onSquareClick={() => handleClick(2)} />

 </div>

 <div className="board-row">

 <Square value={squares[3]} onSquareClick={() => handleClick(3)} />

 <Square value={squares[4]} onSquareClick={() => handleClick(4)} />

 <Square value={squares[5]} onSquareClick={() => handleClick(5)} />

 </div>

 <div className="board-row">

 <Square value={squares[6]} onSquareClick={() => handleClick(6)} />

 <Square value={squares[7]} onSquareClick={() => handleClick(7)} />

 <Square value={squares[8]} onSquareClick={() => handleClick(8)} />

 </div>

 </>

);

}

export default function Game() {

 const [history, setHistory] = useState([Array(9).fill(null)]);

 const [currentMove, setCurrentMove] = useState(0);

 const xIsNext = currentMove % 2 === 0;

 const currentSquares = history[currentMove];

 function handlePlay(nextSquares) {

 const nextHistory = [...history.slice(0, currentMove + 1), nextSquares];

 setHistory(nextHistory);

 setCurrentMove(nextHistory.length - 1);

 }

 function jumpTo(nextMove) {

 setCurrentMove(nextMove);

 }

 const moves = history.map((squares, move) => {

 let description;

 if (move > 0) {

 description = 'Go to move #' + move;

 } else {

 <div className="board-row">

 <Square value={squares[0]} onSquareClick={() => handleClick(0)} />

 <Square value={squares[1]} onSquareClick={() => handleClick(1)} />

 <Square value={squares[2]} onSquareClick={() => handleClick(2)} />

 </div>

 <div className="board-row">

 <Square value={squares[3]} onSquareClick={() => handleClick(3)} />

 <Square value={squares[4]} onSquareClick={() => handleClick(4)} />

 <Square value={squares[5]} onSquareClick={() => handleClick(5)} />

 </div>

 <div className="board-row">

 <Square value={squares[6]} onSquareClick={() => handleClick(6)} />

 <Square value={squares[7]} onSquareClick={() => handleClick(7)} />

 <Square value={squares[8]} onSquareClick={() => handleClick(8)} />

 </div>

 </>

);

}

export default function Game() {

 const [history, setHistory] = useState([Array(9).fill(null)]);

 const [currentMove, setCurrentMove] = useState(0);

 const xIsNext = currentMove % 2 === 0;

 const currentSquares = history[currentMove];

 function handlePlay(nextSquares) {

 const nextHistory = [...history.slice(0, currentMove + 1), nextSquares];

 setHistory(nextHistory);

 setCurrentMove(nextHistory.length - 1);

 }

 function jumpTo(nextMove) {

 setCurrentMove(nextMove);

 }

 const moves = history.map((squares, move) => {

 let description;

 if (move > 0) {

 description = 'Go to move #' + move;

 } else {

 description = 'Go to game start';

 }

 return (

 <li key={move}>

 <button onClick={() => jumpTo(move)}>{description}</button>

);

 });

 return (

 <div className="game">

 <div className="game-board">

 <Board xIsNext={xIsNext} squares={currentSquares} onPlay={handlePlay}

 </div>

 <div className="game-info">

 {moves}

 </div>

 </div>

);

}

function calculateWinner(squares) {

 const lines = [

 [0, 1, 2],

 [3, 4, 5],

 [6, 7, 8],

 [0, 3, 6],

 [1, 4, 7],

 [2, 5, 8],

 [0, 4, 8],

 [2, 4, 6],

];

 for (let i = 0; i < lines.length; i++) {

 const [a, b, c] = lines[i];

 if (squares[a] && squares[a] === squares[b] && squares[a] === squares[c])

 return squares[a];

 }

 }

 return null;

}

 description = 'Go to game start';

 }

 return (

 <li key={move}>

 <button onClick={() => jumpTo(move)}>{description}</button>

);

 });

 return (

 <div className="game">

 <div className="game-board">

 <Board xIsNext={xIsNext} squares={currentSquares} onPlay={handlePlay}

 </div>

 <div className="game-info">

 {moves}

 </div>

 </div>

);

}

function calculateWinner(squares) {

 const lines = [

 [0, 1, 2],

 [3, 4, 5],

 [6, 7, 8],

 [0, 3, 6],

 [1, 4, 7],

 [2, 5, 8],

 [0, 4, 8],

 [2, 4, 6],

];

 for (let i = 0; i < lines.length; i++) {

 const [a, b, c] = lines[i];

 if (squares[a] && squares[a] === squares[b] && squares[a] === squares[c])

 return squares[a];

 }

 }

 return null;

}

If the code doesn’t make sense to you yet, or if you are unfamiliar with the

code’s syntax, don’t worry! The goal of this tutorial is to help you understand

React and its syntax.

We recommend that you check out the tic-tac-toe game above before

continuing with the tutorial. One of the features that you’ll notice is that there is

a numbered list to the right of the game’s board. This list gives you a history of

all of the moves that have occurred in the game, and it is updated as the game

progresses.

Once you’ve played around with the finished tic-tac-toe game, keep scrolling.

You’ll start with a simpler template in this tutorial. Our next step is to set you up

so that you can start building the game.

Setup for the tutorial

In the live code editor below, click Fork in the top-right corner to open the editor

in a new tab using the website CodeSandbox. CodeSandbox lets you write code

in your browser and preview how your users will see the app you’ve created. The

new tab should display an empty square and the starter code for this tutorial.

export default function Square() {

 return <button className="square">X</button>;

}

export default function Square() {

 return <button className="square">X</button>;

}

App.js

Overview

Now that you’re set up, let’s get an overview of React!

Inspecting the starter code

In CodeSandbox you’ll see three main sections:

Note

You can also follow this tutorial using your local development

environment. To do this, you need to:

1. Install Node.js

2. In the CodeSandbox tab you opened earlier, press the top-left corner
button to open the menu, and then choose Download Sandbox in

that menu to download an archive of the files locally

3. Unzip the archive, then open a terminal and cd to the directory you
unzipped

4. Install the dependencies with npm install

5. Run npm start to start a local server and follow the prompts to view

the code running in a browser

If you get stuck, don’t let this stop you! Follow along online instead and

try a local setup again later.

https://nodejs.org/en/

1. The Files section with a list of files like App.js , index.js , styles.css and a

folder called public

2. The code editor where you’ll see the source code of your selected file

3. The browser section where you’ll see how the code you’ve written will be

displayed

The App.js file should be selected in the Files section. The contents of that file

in the code editor should be:

The browser section should be displaying a square with an X in it like this:

Now let’s have a look at the files in the starter code.

App.js

export default function Square() {

 return <button className="square">X</button>;

}

The code in App.js creates a component. In React, a component is a piece of

reusable code that represents a part of a user interface. Components are used

to render, manage, and update the UI elements in your application. Let’s look at

the component line by line to see what’s going on:

The first line defines a function called Square . The export JavaScript keyword

makes this function accessible outside of this file. The default keyword tells

other files using your code that it’s the main function in your file.

The second line returns a button. The return JavaScript keyword means

whatever comes after is returned as a value to the caller of the function.

<button> is a JSX element. A JSX element is a combination of JavaScript code

and HTML tags that describes what you’d like to display. className="square"

is a button property or prop that tells CSS how to style the button. X is the text

displayed inside of the button and </button> closes the JSX element to

indicate that any following content shouldn’t be placed inside the button.

styles.css

Click on the file labeled styles.css in the Files section of CodeSandbox. This

file defines the styles for your React app. The first two CSS selectors (* and

body) define the style of large parts of your app while the .square selector

defines the style of any component where the className property is set to

export default function Square() {

 return <button className="square">X</button>;

}

export default function Square() {

 return <button className="square">X</button>;

}

square . In your code, that would match the button from your Square

component in the App.js file.

index.js

Click on the file labeled index.js in the Files section of CodeSandbox. You

won’t be editing this file during the tutorial but it is the bridge between the

component you created in the App.js file and the web browser.

Lines 1-5 bring all the necessary pieces together:

React

React’s library to talk to web browsers (React DOM)

the styles for your components

the component you created in App.js .

The remainder of the file brings all the pieces together and injects the final

product into index.html in the public folder.

Building the board

Let’s get back to App.js . This is where you’ll spend the rest of the tutorial.

Currently the board is only a single square, but you need nine! If you just try and

copy paste your square to make two squares like this:

import { StrictMode } from 'react';

import { createRoot } from 'react-dom/client';

import './styles.css';

import App from './App';

export default function Square() {

End of Preview

You have reached the end of the preview.

To access the complete version, please visit our website:

https://makepdfdocs.com/

https://makepdfdocs.com/

	React (Guide)
	Table of Contents
	Quick Start
	You will learn
	Creating and nesting components
	Writing markup with JSX
	Adding styles
	Displaying data
	Conditional rendering
	Rendering lists
	Responding to events
	Updating the screen
	Using Hooks
	Sharing data between components
	Next Steps

	Tutorial: Tic-Tac-Toe
	Note
	What are you building?
	Setup for the tutorial
	Note

	Overview
	Inspecting the starter code
	App.js
	styles.css
	index.js

	Building the board

