
React (Reference)

Documentation

© 2025 Mushroom Theory Inc. All Rights Reserved.
Available online at makepdfdocs.com

React Documentation (© Meta Platforms, Inc.)
Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0).
To view the full license, visit https://creativecommons.org/licenses/by/4.0/.

Third-Party Asset:
React logo from SimpleIcons (public domain, CC0 1.0):
https://simpleicons.org/icons/react.svg

Mushroom Theory Inc. Proprietary Material:
All layout, formatting enhancements, examples, and commentary by Mushroom Theory Inc. ©
2025 Mushroom Theory Inc.
No portion of these original contributions may be reproduced, adapted, or redistributed without
prior written permission from Mushroom Theory Inc.

Usage License for Purchaser:
Non-transferable, personal-use only. Redistribution, sharing, or any commercial use by end
users is prohibited.
For the latest version and support, visit makepdfdocs.com

Trademarks:
React® is a registered trademark of Meta Platforms, Inc., used solely to identify the original
documentation. No endorsement or affiliation is implied.

Disclaimer:
Provided “as-is,” without warranty of any kind, express or implied.
Neither Meta Platforms, Inc. nor Mushroom Theory Inc. shall be liable for any damages arising
from use of this PDF.

Table of Contents

React Reference Overview 6

Built-in React Hooks 8

useActionState 12

useCallback 18

useContext 36

useDebugValue 45

useDeferredValue 49

useEffect 62

useId 82

useImperativeHandle 91

useInsertionEffect 97

useLayoutEffect 103

useMemo 110

useOptimistic 134

useReducer 138

useRef 156

useState 164

useSyncExternalStore 182

useTransition 196

Built-in React Components 219

<Fragment> (<>...</>) 220

<Profiler> 227

<StrictMode> 232

<Suspense> 253

<Activity> 272

<ViewTransition> 284

Built-in React APIs 311

act 313

cache 319

captureOwnerStack 336

createContext 343

lazy 350

memo 355

startTransition 368

use 372

experimental_taintObjectReference 383

experimental_taintUniqueValue 389

Table of Contents

unstable_addTransitionType 397

Built-in React DOM Hooks 403

useFormStatus 405

React DOM Components 411

Common components (e.g.<div>) 420

<form> 459

<input> 470

<option> 490

<progress> 493

<select> 495

<textarea> 507

<link> 520

<meta> 529

<script> 533

<style> 538

<title> 542

React DOM APIs 546

createPortal 548

flushSync 557

preconnect 562

prefetchDNS 565

preinit 568

preinitModule 572

preload 576

preloadModule 580

Client React DOM APIs 584

createRoot 585

hydrateRoot 600

Server React DOM APIs 613

renderToPipeableStream 615

renderToReadableStream 636

renderToStaticMarkup 657

renderToString 660

Static React DOM APIs 666

prerender 667

prerenderToNodeStream 678

Rules of React 689

Table of Contents

Components and Hooks mustbe pure 692

React calls Components andHooks 706

Rules of Hooks 710

Server Components 714

Server Functions 724

Directives 731

'use client' 732

'use server' 746

Legacy React APIs 754

Children 756

cloneElement 776

Component 789

createElement 848

createRef 855

forwardRef 861

isValidElement 873

PureComponent 877

API REFERENCE

React Reference Overview
This section provides detailed reference documentation for working

with React. For an introduction to React, please visit the Learn
section.

The React reference documentation is broken down into functional subsections:

React

Programmatic React features:

Hooks - Use different React features from your components.

Components - Built-in components that you can use in your JSX.

APIs - APIs that are useful for defining components.

Directives - Provide instructions to bundlers compatible with React Server

Components.

React DOM

React-dom contains features that are only supported for web applications

(which run in the browser DOM environment). This section is broken into the

following:

Hooks - Hooks for web applications which run in the browser DOM
environment.

Components - React supports all of the browser built-in HTML and SVG

components.

APIs - The react-dom package contains methods supported only in web

applications.

Client APIs - The react-dom/client APIs let you render React components

on the client (in the browser).

https://react.dev/reference/react
https://react.dev/learn
https://react.dev/reference/react/hooks
https://react.dev/reference/react/components
https://react.dev/reference/react/apis
https://react.dev/reference/rsc/directives
https://react.dev/reference/react-dom/hooks
https://react.dev/reference/react-dom/components
https://react.dev/reference/react-dom
https://react.dev/reference/react-dom/client

Server APIs - The react-dom/server APIs let you render React components

to HTML on the server.

Rules of React

React has idioms — or rules — for how to express patterns in a way that is easy

to understand and yields high-quality applications:

Components and Hooks must be pure – Purity makes your code easier to

understand, debug, and allows React to automatically optimize your

components and hooks correctly.

React calls Components and Hooks – React is responsible for rendering

components and hooks when necessary to optimize the user experience.

Rules of Hooks – Hooks are defined using JavaScript functions, but they

represent a special type of reusable UI logic with restrictions on where they

can be called.

Legacy APIs

Legacy APIs - Exported from the react package, but not recommended for

use in newly written code.

https://react.dev/reference/react-dom/server
https://react.dev/reference/rules/components-and-hooks-must-be-pure
https://react.dev/reference/rules/react-calls-components-and-hooks
https://react.dev/reference/rules/rules-of-hooks
https://react.dev/reference/react/legacy

API REFERENCE

Built-in React Hooks
Hooks let you use different React features from your components.

You can either use the built-in Hooks or combine them to build your
own. This page lists all built-in Hooks in React.

State Hooks

State lets a component “remember” information like user input. For example, a

form component can use state to store the input value, while an image gallery

component can use state to store the selected image index.

To add state to a component, use one of these Hooks:

useState declares a state variable that you can update directly.

useReducer declares a state variable with the update logic inside a reducer

function.

Context Hooks

Context lets a component receive information from distant parents without

passing it as props. For example, your app’s top-level component can pass the

current UI theme to all components below, no matter how deep.

useContext reads and subscribes to a context.

function ImageGallery() {

 const [index, setIndex] = useState(0);

 // ...

https://react.dev/reference/react
https://react.dev/learn/state-a-components-memory
https://react.dev/reference/react/useState
https://react.dev/reference/react/useReducer
https://react.dev/learn/extracting-state-logic-into-a-reducer
https://react.dev/learn/extracting-state-logic-into-a-reducer
https://react.dev/learn/passing-props-to-a-component
https://react.dev/learn/passing-props-to-a-component
https://react.dev/reference/react/useContext

Ref Hooks

Refs let a component hold some information that isn’t used for rendering, like a

DOM node or a timeout ID. Unlike with state, updating a ref does not re-render

your component. Refs are an “escape hatch” from the React paradigm. They are

useful when you need to work with non-React systems, such as the built-in

browser APIs.

useRef declares a ref. You can hold any value in it, but most often it’s used to

hold a DOM node.

useImperativeHandle lets you customize the ref exposed by your

component. This is rarely used.

Effect Hooks

Effects let a component connect to and synchronize with external systems. This

includes dealing with network, browser DOM, animations, widgets written using

a different UI library, and other non-React code.

useEffect connects a component to an external system.

function Button() {

 const theme = useContext(ThemeContext);

 // ...

function Form() {

 const inputRef = useRef(null);

 // ...

https://react.dev/learn/referencing-values-with-refs
https://react.dev/reference/react/useRef
https://react.dev/reference/react/useImperativeHandle
https://react.dev/learn/synchronizing-with-effects
https://react.dev/reference/react/useEffect

Effects are an “escape hatch” from the React paradigm. Don’t use Effects to

orchestrate the data flow of your application. If you’re not interacting with an

external system, you might not need an Effect.

There are two rarely used variations of useEffect with differences in timing:

useLayoutEffect fires before the browser repaints the screen. You can

measure layout here.

useInsertionEffect fires before React makes changes to the DOM.

Libraries can insert dynamic CSS here.

Performance Hooks

A common way to optimize re-rendering performance is to skip unnecessary

work. For example, you can tell React to reuse a cached calculation or to skip a

re-render if the data has not changed since the previous render.

To skip calculations and unnecessary re-rendering, use one of these Hooks:

useMemo lets you cache the result of an expensive calculation.

useCallback lets you cache a function definition before passing it down to

an optimized component.

function ChatRoom({ roomId }) {

 useEffect(() => {

 const connection = createConnection(roomId);

 connection.connect();

 return () => connection.disconnect();

 }, [roomId]);

 // ...

function TodoList({ todos, tab, theme }) {

https://react.dev/learn/you-might-not-need-an-effect
https://react.dev/reference/react/useLayoutEffect
https://react.dev/reference/react/useInsertionEffect
https://react.dev/reference/react/useMemo
https://react.dev/reference/react/useCallback

Sometimes, you can’t skip re-rendering because the screen actually needs to

update. In that case, you can improve performance by separating blocking

updates that must be synchronous (like typing into an input) from non-blocking

updates which don’t need to block the user interface (like updating a chart).

To prioritize rendering, use one of these Hooks:

useTransition lets you mark a state transition as non-blocking and allow

other updates to interrupt it.

useDeferredValue lets you defer updating a non-critical part of the UI and

let other parts update first.

Other Hooks

These Hooks are mostly useful to library authors and aren’t commonly used in

the application code.

useDebugValue lets you customize the label React DevTools displays for
your custom Hook.

useId lets a component associate a unique ID with itself. Typically used with
accessibility APIs.

useSyncExternalStore lets a component subscribe to an external store.

useActionState allows you to manage state of actions.

Your own Hooks

You can also define your own custom Hooks as JavaScript functions.

 const visibleTodos = useMemo(() => filterTodos(todos, tab), [todos,

tab]);

 // ...

}

https://react.dev/reference/react/useTransition
https://react.dev/reference/react/useDeferredValue
https://react.dev/reference/react/useDebugValue
https://react.dev/reference/react/useId
https://react.dev/reference/react/useSyncExternalStore
https://react.dev/reference/react/useActionState
https://react.dev/learn/reusing-logic-with-custom-hooks#extracting-your-own-custom-hook-from-a-component

API REFERENCE HOOKS

useActionState
useActionState is a Hook that allows you to update state based on

the result of a form action.

Reference

useActionState(action, initialState, permalink?)

Usage

Using information returned by a form action

Troubleshooting

My action can no longer read the submitted form data

Reference

useActionState(action, initialState,

permalink?)

const [state, formAction, isPending] = useActionState(fn,
initialState, permalink?);

Note

In earlier React Canary versions, this API was part of React DOM and

called useFormState .

https://react.dev/reference/react
https://react.dev/reference/react/hooks

Call useActionState at the top level of your component to create component

state that is updated when a form action is invoked. You pass useActionState

an existing form action function as well as an initial state, and it returns a new

action that you use in your form, along with the latest form state and whether

the Action is still pending. The latest form state is also passed to the function

that you provided.

The form state is the value returned by the action when the form was last

submitted. If the form has not yet been submitted, it is the initial state that you

pass.

If used with a Server Function, useActionState allows the server’s response

from submitting the form to be shown even before hydration has completed.

See more examples below.

Parameters

fn : The function to be called when the form is submitted or button pressed.

When the function is called, it will receive the previous state of the form

import { useActionState } from "react";

async function increment(previousState, formData) {

 return previousState + 1;

}

function StatefulForm({}) {

 const [state, formAction] = useActionState(increment, 0);

 return (

 <form>

 {state}

 <button formAction={formAction}>Increment</button>

 </form>

)

}

https://react.dev/reference/react-dom/components/form

(initially the initialState that you pass, subsequently its previous return

value) as its initial argument, followed by the arguments that a form action
normally receives.

initialState : The value you want the state to be initially. It can be any

serializable value. This argument is ignored after the action is first invoked.

optional permalink : A string containing the unique page URL that this form

modifies. For use on pages with dynamic content (eg: feeds) in conjunction
with progressive enhancement: if fn is a server function and the form is

submitted before the JavaScript bundle loads, the browser will navigate to

the specified permalink URL, rather than the current page’s URL. Ensure that
the same form component is rendered on the destination page (including the

same action fn and permalink) so that React knows how to pass the state

through. Once the form has been hydrated, this parameter has no effect.

Returns

useActionState returns an array with the following values:

1. The current state. During the first render, it will match the initialState you

have passed. After the action is invoked, it will match the value returned by
the action.

2. A new action that you can pass as the action prop to your form component

or formAction prop to any button component within the form. The action
can also be called manually within startTransition .

3. The isPending flag that tells you whether there is a pending Transition.

Caveats

When used with a framework that supports React Server Components,
useActionState lets you make forms interactive before JavaScript has

executed on the client. When used without Server Components, it is
equivalent to component local state.

The function passed to useActionState receives an extra argument, the

previous or initial state, as its first argument. This makes its signature
different than if it were used directly as a form action without using

useActionState .

https://react.dev/reference/rsc/server-functions
https://react.dev/reference/react/startTransition

Usage

Using information returned by a form action

Call useActionState at the top level of your component to access the return

value of an action from the last time a form was submitted.

useActionState returns an array with the following items:

1. The of the form, which is initially set to the you

provided, and after the form is submitted is set to the return value of the
 you provided.

2. A that you pass to <form> as its action prop or call manually

within startTransition .

3. A that you can utilise while your action is processing.

When the form is submitted, the function that you provided will be

called. Its return value will become the new of the form.

The that you provide will also receive a new first argument, namely the

 of the form. The first time the form is submitted, this will be the

import { useActionState } from 'react';

import { action } from './actions.js';

function MyComponent() {

 const [,] = useActionState(,);

 // ...

 return (

 <form action={ }>

 {/* ... */}

 </form>

);

}

state formAction action null

formAction

current state initial state

action

new action

pending state

action

current state

action

current state

 you provided, while with subsequent submissions, it will be the

return value from the last time the action was called. The rest of the arguments

are the same as if useActionState had not been used.

Example 1 of 2:

Display form errors

To display messages such as an error message or toast that’s returned by

a Server Function, wrap the action in a call to useActionState .

initial state

function (, formData) {

 // ...

 return 'next state';

}

action currentState

Display information after submitting a form

1. Display form errors 2. Display structured information after submitting a form

import { useActionState, useState } from "react";

import { addToCart } from "./actions.js";

function AddToCartForm({itemID, itemTitle}) {

 const [message, formAction, isPending] = useActionState(addToCart, n

 return (

 <form action={formAction}>

 <h2>{itemTitle}</h2>

 <input type="hidden" name="itemID" value={itemID} />

 <button type="submit">Add to Cart</button>

 {isPending ? "Loading..." : message}

 </form>

);

import { useActionState, useState } from "react";

import { addToCart } from "./actions.js";

function AddToCartForm({itemID, itemTitle}) {

 const [message, formAction, isPending] = useActionState(addToCart, n

 return (

 <form action={formAction}>

 <h2>{itemTitle}</h2>

 <input type="hidden" name="itemID" value={itemID} />

 <button type="submit">Add to Cart</button>

 {isPending ? "Loading..." : message}

 </form>

);

App.js actions.js

Next Example

Troubleshooting

My action can no longer read the submitted form data

When you wrap an action with useActionState , it gets an extra argument as its

first argument. The submitted form data is therefore its second argument instead

of its first as it would usually be. The new first argument that gets added is the

current state of the form.

}

export default function App() {

 return (

 <>

 <AddToCartForm itemID="1" itemTitle="JavaScript: The Definitive

 <AddToCartForm itemID="2" itemTitle="JavaScript: The Good Parts"

 </>

)

}

}

export default function App() {

 return (

 <>

 <AddToCartForm itemID="1" itemTitle="JavaScript: The Definitive

 <AddToCartForm itemID="2" itemTitle="JavaScript: The Good Parts"

 </>

)

}

function action(currentState, formData) {

 // ...

}

API REFERENCE HOOKS

useCallback
useCallback is a React Hook that lets you cache a function definition

between re-renders.

Reference

useCallback(fn, dependencies)

Usage

Skipping re-rendering of components

Updating state from a memoized callback

Preventing an Effect from firing too often

Optimizing a custom Hook

Troubleshooting

Every time my component renders, useCallback returns a different function

I need to call useCallback for each list item in a loop, but it’s not allowed

Reference

useCallback(fn, dependencies)

Call useCallback at the top level of your component to cache a function definition

between re-renders:

const cachedFn = useCallback(fn, dependencies)

import { useCallback } from 'react';

export default function ProductPage({ productId, referrer, theme }) {

 const handleSubmit = useCallback((orderDetails) => {

 post('/product/' + productId + '/buy', {

https://react.dev/reference/react
https://react.dev/reference/react/hooks

See more examples below.

Parameters

fn : The function value that you want to cache. It can take any arguments and return

any values. React will return (not call!) your function back to you during the initial render.
On next renders, React will give you the same function again if the dependencies have

not changed since the last render. Otherwise, it will give you the function that you have

passed during the current render, and store it in case it can be reused later. React will
not call your function. The function is returned to you so you can decide when and

whether to call it.

dependencies : The list of all reactive values referenced inside of the fn code. Reactive

values include props, state, and all the variables and functions declared directly inside

your component body. If your linter is configured for React, it will verify that every
reactive value is correctly specified as a dependency. The list of dependencies must

have a constant number of items and be written inline like [dep1, dep2, dep3] . React

will compare each dependency with its previous value using the Object.is comparison
algorithm.

Returns

On the initial render, useCallback returns the fn function you have passed.

During subsequent renders, it will either return an already stored fn function from the last

render (if the dependencies haven’t changed), or return the fn function you have passed

during this render.

Caveats

useCallback is a Hook, so you can only call it at the top level of your component or
your own Hooks. You can’t call it inside loops or conditions. If you need that, extract a

new component and move the state into it.

React will not throw away the cached function unless there is a specific reason to do
that. For example, in development, React throws away the cache when you edit the file

of your component. Both in development and in production, React will throw away the

 referrer,

 orderDetails,

 });

 }, [productId, referrer]);

https://react.dev/learn/editor-setup#linting
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/is

cache if your component suspends during the initial mount. In the future, React may

add more features that take advantage of throwing away the cache—for example, if
React adds built-in support for virtualized lists in the future, it would make sense to

throw away the cache for items that scroll out of the virtualized table viewport. This

should match your expectations if you rely on useCallback as a performance
optimization. Otherwise, a state variable or a ref may be more appropriate.

Usage

Skipping re-rendering of components

When you optimize rendering performance, you will sometimes need to cache the

functions that you pass to child components. Let’s first look at the syntax for how to do

this, and then see in which cases it’s useful.

To cache a function between re-renders of your component, wrap its definition into the

useCallback Hook:

You need to pass two things to useCallback :

1. A function definition that you want to cache between re-renders.

2. A including every value within your component that’s used inside

your function.

On the initial render, the you’ll get from useCallback will be the

function you passed.

import { useCallback } from 'react';

function ProductPage({ productId, referrer, theme }) {

 const = useCallback((orderDetails) => {

 post('/product/' + productId + '/buy', {

 referrer,

 orderDetails,

 });

 },);

 // ...

handleSubmit

[productId, referrer]

list of dependencies

returned function

https://react.dev/reference/react/useState#im-trying-to-set-state-to-a-function-but-it-gets-called-instead
https://react.dev/reference/react/useRef#avoiding-recreating-the-ref-contents

On the following renders, React will compare the with the dependencies

you passed during the previous render. If none of the dependencies have changed

(compared with Object.is), useCallback will return the same function as before.

Otherwise, useCallback will return the function you passed on this render.

In other words, useCallback caches a function between re-renders until its dependencies

change.

Let’s walk through an example to see when this is useful.

Say you’re passing a handleSubmit function down from the ProductPage to the

ShippingForm component:

You’ve noticed that toggling the theme prop freezes the app for a moment, but if you

remove <ShippingForm /> from your JSX, it feels fast. This tells you that it’s worth trying

to optimize the ShippingForm component.

By default, when a component re-renders, React re-renders all of its children recursively.

This is why, when ProductPage re-renders with a different theme , the ShippingForm

component also re-renders. This is fine for components that don’t require much calculation

to re-render. But if you verified a re-render is slow, you can tell ShippingForm to skip re-

rendering when its props are the same as on last render by wrapping it in memo :

dependencies

function ProductPage({ productId, referrer, theme }) {

 // ...

 return (

 <div className={theme}>

 <ShippingForm onSubmit={handleSubmit} />

 </div>

);

import { memo } from 'react';

const ShippingForm = memo(function ShippingForm({ onSubmit }) {

 // ...

});

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/is
https://react.dev/reference/react/memo

With this change, ShippingForm will skip re-rendering if all of its props are the same as on

the last render. This is when caching a function becomes important! Let’s say you defined

handleSubmit without useCallback :

In JavaScript, a function () {} or () => {} always creates a different function, similar

to how the {} object literal always creates a new object. Normally, this wouldn’t be a

problem, but it means that ShippingForm props will never be the same, and your memo

optimization won’t work. This is where useCallback comes in handy:

function ProductPage({ productId, referrer, theme }) {

 // Every time the theme changes, this will be a different function...

 function handleSubmit(orderDetails) {

 post('/product/' + productId + '/buy', {

 referrer,

 orderDetails,

 });

 }

 return (

 <div className={theme}>

 {/* ... so ShippingForm's props will never be the same, and it will re-render

every time */}

 <ShippingForm onSubmit={handleSubmit} />

 </div>

);

}

function ProductPage({ productId, referrer, theme }) {

 // Tell React to cache your function between re-renders...

 const handleSubmit = useCallback((orderDetails) => {

 post('/product/' + productId + '/buy', {

 referrer,

 orderDetails,

 });

 }, [productId, referrer]); // ...so as long as these dependencies don't change...

 return (

 <div className={theme}>

 {/* ...ShippingForm will receive the same props and can skip re-rendering */}

 <ShippingForm onSubmit={handleSubmit} />

https://react.dev/reference/react/memo

By wrapping handleSubmit in useCallback , you ensure that it’s the same function

between the re-renders (until dependencies change). You don’t have to wrap a function in

useCallback unless you do it for some specific reason. In this example, the reason is that

you pass it to a component wrapped in memo , and this lets it skip re-rendering. There are

other reasons you might need useCallback which are described further on this page.

 </div>

);

}

Note

You should only rely on useCallback as a performance optimization. If your code

doesn’t work without it, find the underlying problem and fix it first. Then you may

add useCallback back.

DEEP DIVE

How is useCallback related to useMemo?

You will often see useMemo alongside useCallback . They are both useful when

you’re trying to optimize a child component. They let you memoize (or, in other

words, cache) something you’re passing down:

import { useMemo, useCallback } from 'react';

function ProductPage({ productId, referrer }) {

 const product = useData('/product/' + productId);

https://react.dev/reference/react/memo
https://react.dev/reference/react/useMemo
https://en.wikipedia.org/wiki/Memoization

The difference is in what they’re letting you cache:

useMemo caches the result of calling your function. In this example, it caches

the result of calling computeRequirements(product) so that it doesn’t change
unless product has changed. This lets you pass the requirements object down

without unnecessarily re-rendering ShippingForm . When necessary, React will

call the function you’ve passed during rendering to calculate the result.

useCallback caches the function itself. Unlike useMemo , it does not call the

function you provide. Instead, it caches the function you provided so that
handleSubmit itself doesn’t change unless productId or referrer has

changed. This lets you pass the handleSubmit function down without

unnecessarily re-rendering ShippingForm . Your code won’t run until the user
submits the form.

If you’re already familiar with useMemo , you might find it helpful to think of

useCallback as this:

 const requirements = useMemo(() => { // Calls your function and caches its

result

 return computeRequirements(product);

 }, [product]);

 const handleSubmit = useCallback((orderDetails) => { // Caches your function

itself

 post('/product/' + productId + '/buy', {

 referrer,

 orderDetails,

 });

 }, [productId, referrer]);

 return (

 <div className={theme}>

 <ShippingForm requirements={requirements} onSubmit={handleSubmit} />

 </div>

);

}

// Simplified implementation (inside React)

function useCallback(fn, dependencies) {

 return useMemo(() => fn, dependencies);

https://react.dev/reference/react/useMemo
https://react.dev/reference/react/useMemo

Read more about the difference between useMemo and useCallback .

}

DEEP DIVE

Should you add useCallback everywhere?

If your app is like this site, and most interactions are coarse (like replacing a page or

an entire section), memoization is usually unnecessary. On the other hand, if your

app is more like a drawing editor, and most interactions are granular (like moving

shapes), then you might find memoization very helpful.

Caching a function with useCallback is only valuable in a few cases:

You pass it as a prop to a component wrapped in memo . You want to skip re-

rendering if the value hasn’t changed. Memoization lets your component re-
render only if dependencies changed.

The function you’re passing is later used as a dependency of some Hook. For

example, another function wrapped in useCallback depends on it, or you
depend on this function from useEffect.

There is no benefit to wrapping a function in useCallback in other cases. There is

no significant harm to doing that either, so some teams choose to not think about

individual cases, and memoize as much as possible. The downside is that code

becomes less readable. Also, not all memoization is effective: a single value that’s

“always new” is enough to break memoization for an entire component.

Note that useCallback does not prevent creating the function. You’re always

creating a function (and that’s fine!), but React ignores it and gives you back a

cached function if nothing changed.

https://react.dev/reference/react/useMemo#memoizing-a-function
https://react.dev/reference/react/memo
https://react.dev/reference/react/useEffect

Example 1 of 2:

Skipping re-rendering with useCallback and memo

In this example, the ShippingForm component is artificially slowed down so that

you can see what happens when a React component you’re rendering is genuinely

In practice, you can make a lot of memoization unnecessary by following a few

principles:

1. When a component visually wraps other components, let it accept JSX as

children. Then, if the wrapper component updates its own state, React knows
that its children don’t need to re-render.

2. Prefer local state and don’t lift state up any further than necessary. Don’t keep

transient state like forms and whether an item is hovered at the top of your tree
or in a global state library.

3. Keep your rendering logic pure. If re-rendering a component causes a problem
or produces some noticeable visual artifact, it’s a bug in your component! Fix

the bug instead of adding memoization.

4. Avoid unnecessary Effects that update state. Most performance problems in
React apps are caused by chains of updates originating from Effects that cause

your components to render over and over.

5. Try to remove unnecessary dependencies from your Effects. For example,
instead of memoization, it’s often simpler to move some object or a function

inside an Effect or outside the component.

If a specific interaction still feels laggy, use the React Developer Tools profiler to

see which components benefit the most from memoization, and add memoization

where needed. These principles make your components easier to debug and

understand, so it’s good to follow them in any case. In long term, we’re researching

doing memoization automatically to solve this once and for all.

The difference between useCallback and declaring a function

directly

1. Skipping re-rendering with useCallback and memo 2. Always re-rendering a component

https://react.dev/learn/passing-props-to-a-component#passing-jsx-as-children
https://react.dev/learn/passing-props-to-a-component#passing-jsx-as-children
https://react.dev/learn/sharing-state-between-components
https://react.dev/learn/keeping-components-pure
https://react.dev/learn/you-might-not-need-an-effect
https://react.dev/learn/removing-effect-dependencies
https://legacy.reactjs.org/blog/2018/09/10/introducing-the-react-profiler.html
https://www.youtube.com/watch?v=lGEMwh32soc

slow. Try incrementing the counter and toggling the theme.

Incrementing the counter feels slow because it forces the slowed down

ShippingForm to re-render. That’s expected because the counter has changed, and

so you need to reflect the user’s new choice on the screen.

Next, try toggling the theme. Thanks to useCallback together with memo , it’s fast

despite the artificial slowdown! ShippingForm skipped re-rendering because the

handleSubmit function has not changed. The handleSubmit function has not

changed because both productId and referrer (your useCallback

dependencies) haven’t changed since last render.

import { useCallback } from 'react';

import ShippingForm from './ShippingForm.js';

export default function ProductPage({ productId, referrer, theme }) {

 const handleSubmit = useCallback((orderDetails) => {

 post('/product/' + productId + '/buy', {

 referrer,

 orderDetails,

 });

 }, [productId, referrer]);

 return (

 <div className={theme}>

 <ShippingForm onSubmit={handleSubmit} />

 </div>

);

}

function post(url, data) {

 // Imagine this sends a request...

 console.log('POST /' + url);

 console.log(data);

}

import { useCallback } from 'react';

import ShippingForm from './ShippingForm.js';

export default function ProductPage({ productId, referrer, theme }) {

 const handleSubmit = useCallback((orderDetails) => {

 post('/product/' + productId + '/buy', {

 referrer,

 orderDetails,

 });

 }, [productId, referrer]);

 return (

 <div className={theme}>

 <ShippingForm onSubmit={handleSubmit} />

 </div>

);

}

function post(url, data) {

 // Imagine this sends a request...

 console.log('POST /' + url);

 console.log(data);

}

App.js ProductPage.js ShippingForm.js

https://react.dev/reference/react/memo

Next Example

Updating state from a memoized callback

Sometimes, you might need to update state based on previous state from a memoized

callback.

This handleAddTodo function specifies todos as a dependency because it computes the

next todos from it:

You’ll usually want memoized functions to have as few dependencies as possible. When

you read some state only to calculate the next state, you can remove that dependency by

passing an updater function instead:

Here, instead of making todos a dependency and reading it inside, you pass an instruction

about how to update the state (todos => [...todos, newTodo]) to React. Read more

function TodoList() {

 const [todos, setTodos] = useState([]);

 const handleAddTodo = useCallback((text) => {

 const newTodo = { id: nextId++, text };

 setTodos([...todos, newTodo]);

 }, [todos]);

 // ...

function TodoList() {

 const [todos, setTodos] = useState([]);

 const handleAddTodo = useCallback((text) => {

 const newTodo = { id: nextId++, text };

 setTodos(todos => [...todos, newTodo]);

 }, []); // ✅ No need for the todos dependency

 // ...

https://react.dev/reference/react/useState#updating-state-based-on-the-previous-state
https://react.dev/reference/react/useState#updating-state-based-on-the-previous-state

about updater functions.

Preventing an Effect from firing too often

Sometimes, you might want to call a function from inside an Effect:

This creates a problem. Every reactive value must be declared as a dependency of your

Effect. However, if you declare createOptions as a dependency, it will cause your Effect to

constantly reconnect to the chat room:

To solve this, you can wrap the function you need to call from an Effect into useCallback :

function ChatRoom({ roomId }) {

 const [message, setMessage] = useState('');

 function createOptions() {

 return {

 serverUrl: 'https://localhost:1234',

 roomId: roomId

 };

 }

 useEffect(() => {

 const options = createOptions();

 const connection = createConnection(options);

 connection.connect();

 // ...

 useEffect(() => {

 const options = createOptions();

 const connection = createConnection(options);

 connection.connect();

 return () => connection.disconnect();

 }, [createOptions]); // 🔴 Problem: This dependency changes on every render

 // ...

https://react.dev/reference/react/useState#updating-state-based-on-the-previous-state
https://react.dev/learn/synchronizing-with-effects
https://react.dev/learn/lifecycle-of-reactive-effects#react-verifies-that-you-specified-every-reactive-value-as-a-dependency
https://react.dev/learn/lifecycle-of-reactive-effects#react-verifies-that-you-specified-every-reactive-value-as-a-dependency

This ensures that the createOptions function is the same between re-renders if the

roomId is the same. However, it’s even better to remove the need for a function

dependency. Move your function inside the Effect:

function ChatRoom({ roomId }) {

 const [message, setMessage] = useState('');

 const createOptions = useCallback(() => {

 return {

 serverUrl: 'https://localhost:1234',

 roomId: roomId

 };

 }, [roomId]); // ✅ Only changes when roomId changes

 useEffect(() => {

 const options = createOptions();

 const connection = createConnection(options);

 connection.connect();

 return () => connection.disconnect();

 }, [createOptions]); // ✅ Only changes when createOptions changes

 // ...

function ChatRoom({ roomId }) {

 const [message, setMessage] = useState('');

 useEffect(() => {

 function createOptions() { // ✅ No need for useCallback or function dependencies!

 return {

 serverUrl: 'https://localhost:1234',

 roomId: roomId

 };

 }

 const options = createOptions();

 const connection = createConnection(options);

 connection.connect();

 return () => connection.disconnect();

 }, [roomId]); // ✅ Only changes when roomId changes

 // ...

End of Preview

You have reached the end of the preview.

To download the complete version, please visit our website:

https://makepdfdocs.com/

https://makepdfdocs.com/

	React (Reference)
	Table of Contents
	React Reference Overview
	React
	React DOM
	Rules of React
	Legacy APIs

	Built-in React Hooks
	State Hooks
	Context Hooks
	Ref Hooks
	Effect Hooks
	Performance Hooks
	Other Hooks
	Your own Hooks

	useActionState
	Note
	Reference
	useActionState(action, initialState, permalink?)
	Parameters
	Returns
	Caveats

	Usage
	Using information returned by a form action
	Display information after submitting a form
	Example1 of2:Display form errors

	Troubleshooting
	My action can no longer read the submitted form data

	useCallback
	Reference
	useCallback(fn, dependencies)
	Parameters
	Returns
	Caveats

	Usage
	Skipping re-rendering of components
	Note
	DEEP DIVE
	How is useCallback related to useMemo?
	DEEP DIVE

	Should you add useCallback everywhere?
	The difference between useCallback and declaring a functiondirectly
	Example1 of2:Skipping re-rendering with useCallback and memo

	Updating state from a memoized callback
	Preventing an Effect from firing too often

